交集计算

交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}。

差集计算

一般地,记A,B是两个集合,则所有属于A且不属于B的元素构成的集合,叫做集合A减集合B(或集合A与集合B之差),类似地,对于集合A、B,我们把集合{x∣x∈A,且x∉B}叫做A与B的差集。

子集计算

子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset)。

对称差集

对称差集:集合A与集合B的对称差集定义为集合A与集合B中所有不属于A∩B的元素的集合,记为A△B,也就是说A△B={x|x∈A∪B,x∉A∩B},即A△B=(A∪B)—(A∩B).也就是A△B=(A—B)∪(B—A)。很明显,对称差集运算满足交换律:A△B=B△A,对称差集也叫做对称差分

并集计算

在集合论中,一组集合的并集(union)是由这些集合的所有元素构成的集合,除此之外不包含其他元素。


二维码